13 research outputs found

    Automotive Inductive Position Sensor

    Get PDF
    Inductive angular position sensors (IAPS) are widely used for high accuracy and low cost angular position sensing in harsh automotive environments, such as suspension height sensor and throttle body position sensor. These sensors ensure high resolution and long lifetime due to their contactless sensing mode and their simple structure. Furthermore, they are suitable for wider application areas. For instance, they can be miniaturized to fit into a compact packaging space, or be adopted to measure the relative angle of multiple rotating targets for the purposes of torque sensing. In this work, a detailed SIMULINK model of an IAPS is first proposed in order to study and characterize the sensor performance. The model is validated by finite element analysis and circuit simulation, which provides a powerful design tool for sensor performance analysis. The sensor error introduced by geometry imperfection is thoroughly investigated for two-phase and three-phase configurations, and a corresponding correction method to improve the accuracy is proposed. A design optimization method based on the response surface methodology is also developed and used in the sensor development. Three types of sensors are developed to demonstrate the inductive sensor technology. The first type is the miniaturized inductive sensor. To compensate for the weak signal strength and the reduced quality (Q) factor due to the scaling down effect, a resonant rotor is developed for this type of sensor. This sensor is fabricated by using the electrodeposition technique. The prototype shows an 8mm diameter sensor can function well at 1.5mm air gap. The second type is a steering torque sensor, which is designed to detect the relative torsional angle of a rotating torsional shaft. It demonstrates the mutual coupling of multiple inductive sensors. By selecting a proper layout and compensation algorithm, the torque sensor can achieve 0.1 degree accuracy. The third type is a passive inductive sensor, which is designed to reduce power consumption and electromagnetic emissions. The realization and excellent performance of these three types of sensors have shown the robustness of the inductive sensor technology and its potential applications. The research conducted in this dissertation is expected to improve understanding of the performance analysis of IAPS and provide useful guidelines for the design and performance optimization of inductive sensors

    Macrophage Polarization in Cerebral Aneurysm: Perspectives and Potential Targets

    No full text
    Cerebral aneurysms (CAs) have become a health burden not only because their rupture is life threatening, but for a series of devastating complications left in survivors. It is well accepted that sustained chronic inflammation plays a crucial role in the pathology of cerebral aneurysms. In particular, macrophages have been identified as critical effector cells orchestrating inflammation in CAs. In recent years, dysregulated M1/M2 polarization has been proposed to participate in the progression of CAs. Although the pathological mechanisms of M1/M2 imbalance in CAs remain largely unknown, recent advances have been made in the understanding of the molecular basis and other immune cells involving in this sophisticated network. We provide a concise overview of the mechanisms associated with macrophage plasticity and the emerging molecular targets

    Overexpression of <i>DoBAM1</i> from Yam (<i>Dioscorea opposita</i> Thunb.) Enhances Cold Tolerance in Transgenic Tobacco

    No full text
    β-amylase (BAM) plays an important role in plant development and response to abiotic stresses. In this study, 5 DoBAM members were identified in yam (Dioscorea opposita Thunb.). A novel β-amylase gene BAM1, (named DoBAM1), was isolated from yam varieties Bikeqi and Dahechangyu. The open reading frame (ORF) of DoBAM1 is 2806 bp and encodes 543 amino acids. Subcellular localization analysis indicates that DoBAM1 localizes to the cell membrane and cytoplasm. In the yam variety Dahechangyu, the starch content, β-amylase activity, and expression of DoBAM1 were characterized and found to all be higher than in Bikeqi. DoBAM1 overexpression in tobacco is shown to promote the accumulation of soluble sugar and chlorophyll content and to increase the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and β-amylase. Under cold treatment, we observed the induced upregulation of DoBAM1 and lower starch content and malondialdehyde (MDA) accumulation than in WT plants. In conclusion, these results demonstrate that DoBAM1 overexpression plays an advanced role in cold tolerance, at least in part by raising the levels of soluble sugars that are capable of acting as osmolytes or antioxidants

    Effect of Bleach Pretreatment on Surface Discoloration of Dyed Wood Veneer Exposed to Artificial Light Irradiation

    No full text
    To investigate the effect of bleach pretreatment on the surface photo-discoloration of dyed wood, two kinds of bleached and unbleached dyed wood veneers were irradiated in a xenon light source accelerated aging tester. The exposed surfaces’ color, spectral reflectivity, chemical functional groups, and microstructure were characterized. Bleach pretreatment improved the dyeing effect of the wood veneers. However, it decreased the light fastness of the samples, and as adsorption between the dyes and wood components was reduced, some chromophoric chemical structures of the wood lignin and dyes were degraded, and some extractives (which can function as antioxidants to protect wood surfaces from discoloration) were removed. After light irradiation, the reflectance curves of dyed wood veneers was shifted toward longer wavelengths and noticeable yellowing was observed. Some parenchyma tissue, such as pit membranes in wood cell walls, suffered serious deterioration, as indicated by SEM

    Daphnetin Protects against Cerebral Ischemia/Reperfusion Injury in Mice via Inhibition of TLR4/NF-κB Signaling Pathway

    No full text
    Growing evidences indicate that immune-mediated mechanisms contribute to the development of cerebral ischemia/reperfusion (I/R) injury. Daphnetin (DAP) is a coumarin derivative extracted from Daphne odora var., which displays anti-inflammatory properties. However, the effect of DAP on cerebral I/R injury is not yet clear. Recent studies have demonstrated that TLR4/NF-κB signaling pathway takes part in the damaging inflammatory process of cerebral I/R injury. The present study aimed to investigate the effect of DAP on cerebral I/R injury in vivo and its possible mechanisms. DAP was administered before middle cerebral artery occlusion and reperfusion in mice. The neurological scores, cerebral infarct sizes, the levels of inflammatory cytokines, apoptotic neural cells, and the levels of TLR4, NF-κB p65, and IκBα were estimated. The results showed that an obvious improvement of neurological scores and infarct sizes was observed in DAP-treated mice after MCAO/R. DAP treatment decreased the overexpression of TNF-α, IL-1β, and IL-6 and attenuated neural cells apoptosis. Moreover, DAP treatment decreased the TLR4 expression, IκB-α degradation, and nuclear translocation of NF-κB. Taken together, our results suggested that DAP exerted neuroprotective and anti-inflammatory effects on cerebral I/R injury. The potential mechanism was involved in the inhibition of TLR4/NF-κB mediated inflammatory signaling pathway

    Data_Sheet_1_Nursing students' experience during their practicum in an intensive care unit: A qualitative meta-synthesis.docx

    No full text
    BackgroundClinical practicum provides nursing students with more opportunities to learn their professional knowledge and develop basic nursing skills. Intensive care unit (ICU) is often used as one of the clinical practicum departments for nursing students. Due to the characteristic fast-paced working environments, high acuity of patient care, and technical complexities of an ICU, nursing students are more susceptible to experiencing stress and lack of confidence in these settings, which hinders their professionalization and affects patient care.ObjectiveThe study aimed to summarize and evaluate the nursing students' experience in an ICU during their practicum and to provide a supportive ICU clinical practicum environment for them. One of the main objectives was to increase the ICU specialty nurse reserve and improve nursing care in the ICU.MethodsThe following databases were searched for related qualitative publications in Chinese and English by systematic searches across January 2022, including the nursing students' experience in ICU during their practicum: PubMed, Cochrane Library, Web of Science, and so on. The qualitative meta-synthesis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. Two reviewers independently selected these studies and carefully evaluated the quality of each study. Meta-synthesis was then used to summarize the results.ResultsEleven sub-themes and 3 themes were revealed in 9 studies: challenges of clinical practicum in the ICU, the expectation of support from multiple sources, and the importance and necessity of practicum in the ICU.ConclusionPerforming one's practicum in ICU was considered by the nursing students in this review as a beneficial practicum despite the challenges involved. The appropriate guidance and monitoring should be given by hospital managers and college educators.</p

    Large HBV Surface Protein-Induced Unfolded Protein Response Dynamically Regulates p27 Degradation in Hepatocellular Carcinoma Progression

    No full text
    Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle

    Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application <i>via</i> an Electrospun Scaffold

    No full text
    Remedying a multidrug-resistant (MDR) bacteria wound infection is a major challenge due to the inability of conventional antibiotics to treat such infections against MDR bacteria. Thus, developing wound dressings for wound care, particularly against MDR bacteria, is in huge demand. Here, we present a strategy in designing wound dressings: we use a small molecule (6-aminopenicillanic acid, APA)-coated gold nanoparticles (AuNPs) to inhibit MDR bacteria. We dope the AuNPs into electrospun fibers of poly­(ε-caprolactone) (PCL)/gelatin to yield materials that guard against wound infection by MDR bacteria. We systematically evaluate the bactericidal activity of the AuNPs and wound-healing capability <i>via</i> the electrospun scaffold. APA-modified AuNPs (Au_APA) exhibit remarkable antibacterial activity even when confronted with MDR bacteria. Meanwhile, Au_APA has outstanding biocompatibility. Moreover, an <i>in vivo</i> bacteria-infected wound-healing experiment indicates that it has a striking ability to remedy a MDR bacteria wound infection. This wound scaffold can assist the wound care for bacterial infections

    Molecule-based water-oxidation catalysts (WOCs) : cluster-size-dependent dye-sensitized polyoxometalates for visible-light-driven O2 evolution

    No full text
    From atomic level to understand the cluster-size-dependant behavior of dye-sensitized photocatalysts is very important and helpful to design new photocatalytic materials. Although the relationship between the photocatalytic behaviors and particles' size/shape has been widely investigated by theoretical scientists, the experimental evidences are much less. In this manuscript, we successfully synthesized three new ruthenium dye-sensitized polyoxometalates (POM-n, n relate to different size clusters) with different-sized POM clusters. Under visible-light illumination, all three complexes show the stable O 2 evolution with the efficient order POM-3 > POM-2 > POM-1. This cluster-size-dependent catalytic behavior could be explained by the different numbers of M = Ot (terminal oxygen) bonds in each individual cluster because it is well-known that Mo = Ot groups are the catalytically active sites for photooxidation reaction. The proposed mechanism of water oxidation for the dye-sensitized POMs is radical reaction process. This research could open up new perspectives for developing new POM-based WOCs.Published versio
    corecore